DMXL2 drives epithelial to mesenchymal transition in hormonal therapy resistant breast cancer through notch hyper-activation

نویسندگان

  • Monica Faronato
  • Van T.M. Nguyen
  • Darren K. Patten
  • Ylenia Lombardo
  • Jennifer H. Steel
  • Naina Patel
  • Laura Woodley
  • Sami Shousha
  • Giancarlo Pruneri
  • R. Charles Coombes
  • Luca Magnani
چکیده

The acquisition of endocrine therapy resistance in estrogen receptor α (ERα) breast cancer patients represents a major clinical problem. Notch signalling has been extensively linked to breast cancer especially in patients who fail to respond to endocrine therapy. Following activation, Notch intracellular domain is released and enters the nucleus where activates transcription of target genes. The numerous steps that cascade after activation of the receptor complicate using Notch as biomarker. Hence, this warrants the development of reliable indicators of Notch activity. DMXL2 is a novel regulator of Notch signalling not yet investigated in breast cancer. Here, we demonstrate that DMXL2 is overexpressed in a subset of endocrine therapy resistant breast cancer cell lines where it promotes epithelial to mesenchymal transition through hyper-activation of Notch signalling via V-ATPase dependent acidification. Following DMXL2 depletion or treatment with Bafilomycin A1, both EMT targets and Notch signalling pathway significantly decrease. We show for the first time that DMXL2 protein levels are significantly increased in ERα positive breast cancer patients that progress after endocrine therapy. Finally, we demonstrate that DMXL2 is a transmembrane protein with a potential extra-cellular domain. These findings identify DMXL2 as a novel, functional biomarker for ERα positive breast cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...

متن کامل

Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1

Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...

متن کامل

Endocrine therapy resistance and epithelial to mesenchymal transition are driven by Nicastrin and Notch4 cooperation in MCF7 breast cancer cells

Endocrine therapy resistant (ETR) tumors often display mesenchymal features, associated with aggressive and enhanced motility behaviour. Notch signalling is over-activated in ETR cells. By blocking it, it is possible to interfere with the cell growth. Notch is also implicated in regulating epithelial to mesenchymal transition (EMT) affecting both migration and invasion in breast cancer cells. W...

متن کامل

HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance

HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs) is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 ext...

متن کامل

Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop

In the present study, we demonstrate that prolonged treatment by trastuzumab induced resistance of NCI-N87 gastric cancer cells to trastuzumab. The resistant cells possessed typical characteristics of epithelial to mesenchymal transition (EMT)/cancer stem cells and acquired more invasive and metastatic potentials both in vitro and in vivo. Long term treatment with trastuzumab dramatically inhib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015